
 © TETCOS LLP. All rights reserved.

Ver 13.3 Page 1 of 7

Sink Hole Attack using RPL in IOT

Software: NetSim Standard v13.3, Visual Studio 2022

Project Download Link:

https://github.com/NetSim-TETCOS/Sinkhole-Attack-in-IoT-RPL-
V13.3/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and set up the Project in
NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-
up-netsim-file-exchange-projects

Introduction:
In a sinkhole Attack, a compromised node or malicious node advertises fake rank information to

form the fake routes, and after receiving the message packet, it drops the packet information.

Sinkhole attacks affect the performance of IoT network protocols such as RPL protocol.

Figure 1: network configuration of how the traffic

flow is configured

Figure 2: Network configuration of actual traffic flow

along with the working of malicious node

Implementation in RPL (for 1 sink):

• In RPL the transmitter broadcasts the DIO during DODAG formation.

• The receiver on receiving the DIO from the transmitter updates its parent list, sibling list,

and rank and sends a DAO message with route information.

• Malicious node upon receiving the DIO message does not update the rank instead it

always advertises a fake rank.

• The other node on listening to the malicious node DIO message updates its rank

according to the fake rank.

• After the formation of DODAG, if the node that is transmitting the packet has a malicious

https://github.com/NetSim-TETCOS/Sinkhole-Attack-in-IoT-RPL-V13.3/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/Sinkhole-Attack-in-IoT-RPL-V13.3/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

 © TETCOS LLP. All rights reserved.

Ver 13.3 Page 2 of 7

• node as the preferred parent, transmits the packet to it but the malicious node instead of

transmitting the packet to its parent, simply drops the packet resulting in zero

throughputs.

A file Malicious.c is added to the RPL project. The file contains the following functions.

• fn_NetSim_RPL_MaliciousNode(); //This function is used to identify whether a current

device is malicious or not in order to establish malicious behavior.

• fn_NetSim_RPL_MaliciousRank(); //This function is used to give a fake rank to the

malicious node.

• rpl_drop_msg(); //This function is used to drop the packet by the malicious node if it

enters into its network layer.

• Fn_NetSim_RPL_FreePacket(); // This function is used inside rpl_drop_msg() for

dropping the packets.

• Sink Hole Attack -The malicious node advertises the fake rank

fn_NetSim_RPL_MaliciousRank(); is the sinkhole attack function.

• Black Hole Attack: The malicious node drops the packet, rpl_drp_msg() is the black

hole attack function

You can set any device as malicious, and you can have more than one malicious node in a

scenario. Device IDs of malicious nodes can be set inside the

fn_NetSim_RPL_MaliciousNode() function.

Example

1. The WorkSpace_SinkHole_Attack_RPL comes with a sample network configuration

that is already saved. To open this example, go to Your work in the home screen of

NetSim and click on the SinkHole_Attack_in_RPL_Example from the list of

experiments.

2. The saved network scenario consists of

a. 5 Wireless Sensors

b. 1 6_LOWPAN Gateway

c. 1 Router

d. 1 Wired Node

 © TETCOS LLP. All rights reserved.

Ver 13.3 Page 3 of 7

3. In Ad-hoc link set the Channel Characteristics: Pathloss Only, Pathloss Model: Log

Distance, Pathloss Exponent: 2

4. Enable the packet trace on the top ribbon and enable the Wireshark on all the devices

5. Run the simulation for 100 Seconds.

Results and discussion:

Open the rpllog.txt file from the results dashboard window, then you will find the information

about DODAG formation. For every DODAG, 6LoWPAN Gateway is the root of the DODAG.

Figure 4: Result Dashboard Window

• Root is 1 with rank = 1 (Since the Node Id_1 is always 6LoWPAN Gateway)

• Wireless_Sensor_Node_7 (Malicious Node)

Figure 3:Network Setup of Sinkhole Attack in IOT RPL

 © TETCOS LLP. All rights reserved.

Ver 13.3 Page 4 of 7

• Packet is ‘transmitted’ by node 8(Sensor_8) and is ‘received’ by node 7(Sensor_7)

since node 7 is a malicious node it drops the packet. So, the Throughput in this

scenario is 0.

• Open the packet trace file from the simulation results window and filter the control

packet Type/App Name to App1_Sensor_App.

• Check the data packets flow, the Transmitter_ID, and receiver_ID column. Since node 7

is a malicious node, it drops the packet without forwarding it further.

Figure 5: NetSim Packet Trace Window

Introducing multiple malicious nodes:

To introduce the multiple malicious nodes in the network, consider a larger network consisting of

more sensors and with multiple sensor devices generating traffic. Malicious nodes can be

distributed in different locations of the network and their impact on the network can be analyzed.

1. Add one more sensor i.e., Sensor_9 for a similar scenario and create traffic as shown

below.

Figure 6: IoT Network Topology for multiple malicious nodes

 © TETCOS LLP. All rights reserved.

Ver 13.3 Page 5 of 7

2. Make sure that the Routing protocol in the added sensor is same as the network

configured.

3. Consider sensors 6 and 7 as malicious nodes with fake rank by defining them in the

Malicious.c at RPL Project file as shown below.

Figure 7: Defining malicious nodes in Malicious.c file

4. In fn_NetSim_RPL_MaliciousNode() function, the if condition for checking malicious

nodes needs to be updated.

Figure 8:If condition for checking multiple malicious nodes

5. Now right click on Solution explorer and select Rebuild.

 © TETCOS LLP. All rights reserved.

Ver 13.3 Page 6 of 7

Figure 9: solution Explorer rebuild.

Results and discussion:

Sensor 8 will consider sensor 7 as a parent and sensor 9 will consider sensor 6 as a parent

instead of sensor 4 since sensor 6 advertises a lower rank compared to sensor 4. Packets that

reach sensors 7 and 6 get dropped. Results can be visualized in the rpllog.txt and packet trace.

You can also check the distribution of ranks with the help of the DODAG visualizer-

https://support.tetcos.com/support/solutions/articles/14000134056-how-to-visualize-the-rpl-

dodag-in-netsim-iot-simulations-

Note: Wireshark and packet trace should be enabled, and pandas, networkx, and matplotlib

packages need to be installed while running the exe.

The DODAG plots appear vertically flipped when compared to the network topology in NetSim

since the origin (0,0) is at the top left in NetSim whereas it is at the bottom left in the plot

window.

Figure 10: RPL DODAG Visualizer

https://support.tetcos.com/support/solutions/articles/14000134056-how-to-visualize-the-rpl-dodag-in-netsim-iot-simulations-
https://support.tetcos.com/support/solutions/articles/14000134056-how-to-visualize-the-rpl-dodag-in-netsim-iot-simulations-

 © TETCOS LLP. All rights reserved.

Ver 13.3 Page 7 of 7

Note: Conditions for Malicious node to be able to attract other legitimate nodes:

• The malicious node should be within the range of other nodes.

• The malicious nodes’ DIO broadcast should be received by other nodes with a rank

lower than other DIO messages received.

Appendix: NetSim source code modifications

Set malicious node id and the fake Rank in Malicious.c file which is present under RPL project

 #include "main.h"
 #include "RPL.h"
 #include "RPL_enum.h"
 #define MALICIOUS_NODE1 7
 #define MALICIOUS_RANK1 3

 #define MALICIOUS_NODE2 6
 #define MALICIOUS_RANK2 4

Code changes done in fn_NetSim_RPL_Run(), in RPL.c file, within RPL project

_declspec (dllexport) int fn_NetSim_RPL_Run()
{
 switch (pstruEventDetails->nEventType)
 {
 case NETWORK_OUT_EVENT:
 {
 }
 break;
 case NETWORK_IN_EVENT:
 {
 rpl_add_to_neighbor_list();
 if (is_rpl_control_packet(pstruEventDetails->pPacket))
 {
 if (fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
 fn_NetSim_RPL_MaliciousRank(pstruEventDetails);
 else
 rpl_process_ctrl_msg();
 fn_NetSim_Packet_FreePacket(pstruEventDetails->pPacket);
 pstruEventDetails->pPacket = NULL;
 }
 else if (pstruEventDetails->nPacketId &&
fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
 {
 rpl_drop_msg();
 }
 }
 break;

